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Abstract: Hadoop is a popular open-source implementation of the MapReduce programming model for Cloud 

Computing. However, it faces a number of issue to achieve the best performance from the underlying system. It include 

a serialization barrier that delays the reduce phase, repetitive merges and disk access, and lack of capability to leverage 

latest high-speed interconnects. We express some technologies which are helpful for improve the performance of 

Hadoop. The technologies are Hadoop-A, iShuffle, TCP/IP implementation of Hadoop-A, Hadoop OFE, Hadoop online 

are used for regret the performance of Hadoop. 
 

Keywords: Hadoop, MapReduce, JobTracker, TaskTracker, MapTask, RDMA, InfiniBand, MOFSupplier, NetMerger, 

iShuffle, OFE. 

 

I. INTRODUCTION 

Hadoop[1] is an open-source implementation of 

MapReduce[2], currently maintained by the Apache 

Foundation, and supported by leading IT companies such 

as Google and Yahoo!.Hadoop implements MapReduce 

framework which use 2 types of components: 1.JobTracker 

2.TaskTracker.JobTracker gives the command to the 

TaskTrackers to process the data in parallel manner.  

JobTracker have 2 main functions i.e. map and reduce. In 

that the JobTracker gives the charges of MapTask and 

ReduceTask to the TaskTracker. It also monitors their 

progress and handles the faults by re-executing the task. 

There are different issues in MapReduce framework 

that a) Serialization between Hadoop shuffle/merge and 

reduce phase b) Repetitive merge and disk access c) 

unable to use RDMA interconnects. d) MapReduce 

computations often have “hot spots” in which the 

computation is lengthened due to inadequate bandwidth to 

some of the nodes. e) Hadoop-A is implemented based on 

InfiniBand, which restricts the usage of new algorithms on 

commercial cloud servers and prevents them from proving 

their contribution towards solving the disk I/O bottleneck. 

Several different techniques have been taken to accelerate 

Hadoop as follows. 

Hadoop-A[3] is an acceleration framework that 

optimizes Hadoop with plug-ins which are implemented in 

C++ for fast data movement. 

Hadoop Online presents a modified version of the 

Hadoop MapReduce framework that supports online 

aggregation, which allows users to see “early returns” 

from a job as it is being computed. The Hadoop Online 

Prototype (HOP) also supports continuous queries, which 

enable MapReduce programs to be written for applications 

such as event monitoring and stream processing. 

Hadoop-OFE’s approach to acceleration is orthogonal 

to the methods discussed above. Its goal is to improve the 

performance of MapReduce in Hadoop by utilizing 

OpenFlow as the interconnects between Hadoop nodes. 

One strategy is to make use of the QoS abilities of  

 

OpenFlow, which allows control over egress queues in an 

OpenFlow switch. This makes it possible for different 

flows to have different priorities over the bandwidth, and 

allows an application to control this priority setting. Thus 

applications can dynamically set different priorities to 

flows. In the case of Hadoop MapReduce there are distinct 

phases of execution that can benefit by prioritizing traffic 

on the network. 

iShuffle [9], a job-independent shuffle service that 

pushes the map output to its designated reduce node. It 

decouples shuffle and reduce, and allows shuffle to be 

performed independently from reduce. It predicts the map 

output partition sizes and automatically balances the 

placement of map output partitions across nodes. iShuffle 

binds reduce IDs with partition IDs lazily at the time 

reduce tasks are scheduled, allowing flexible scheduling of 

reduce tasks. 

The rest of the paper is organized as follows-

Section (2)Overview of MapReduce Framework,(3) 

Design of Hadoop acceleration through network levitated 

merge,(4) TCP/IP implementation of Hadoop 

A,(5)iShuffle,(6)Hadoop OFE,(7) Conclusion 

 

II. OVERVIEW OF MapReduce FRAMEWORK 

Hadoop MapReduce is a pipelined data 

processing. Hadoop consist three main execution phases 

i.e. map, shuffle/merge and reduce. In a map phase the 

JobTracker selects a number of TaskTrackers {TT1, TT2, 

TT3…} and schedule them to run the map function. The 

mapping function in a map task converts the original 

records into intermediate result. These new records are 

stored as a MOF(i.e. Map Output Files). In the second 

phase when MOFs are available the JobTracker selects the 

TaskTrackers to run the reduce task. Typically, there is 

one segment in each MOF for every ReduceTask. So, a 

ReduceTask need to fetch such a segment for all 

MOFs{MOF1,MOF2...}. Globally these phase operation 

lead to an all-to-all shuffle on data segments among all the 
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ReduceTask. Shuffle and merge of data segment by 

ReduceTask is called the copy phase of Hadoop. In the 

third or reduce phase each ReduceTask loads and process 

the merge segment using the reduce function. The final 

result is store in HDFS[4]. 

 

A. Issues in the MapReduce framework 

There are various issues in the existing Hadoop 

MapReduce framework these are (a)A serialization in 

Hadoop data processing (b)Repetitive merge and disk 

access(c)The lack of support for RDMA interconnects. 

 

1. Serialization in Hadoop data processing: 

Hadoop process the large datasets in pipelined 

manner. There are two phases which processed in 

pipelining architecture: 1.Map 2.Shuffle/Merge. After the 

initialization multiple MapTask start with the map function 

on the first set of data splits. Whenever the MOFs are 

generated from these splits then set of ReduceTask 

initiates the fetch partition through these MOFs. At every 

ReduceTask when total data size is more than a memory 

threshold then the smallest datasets are merged. In 

MapReduce programming model, the reduce phase does 

not execute until the map phase get executed with all data 

splits. MapReduce pipeline architecture has an implicit 

serialization. At every ReduceTask whenever the merge 

and shuffle operations are completed on each data splits 

then reduce phase initiates to process data segment using 

reduce function. Because of this serialization, reduce phase 

will be delayed. 

 

2. Repetitive merge and disk access: 

ReduceTask merge data segment when the 

number of segment or their total size grows over a 

threshold a newly merge segment has to be spilled to local 

disk due to memory pressure. In the existing merge 

algorithm in Hadoop leads to more repetitive merge 

therefore the extra disk is accessed. When more segments 

are arrive then the threshold will be broken. It is vital to 

choose a different policy for merge to minimize the 

additional disk accessed. An alternative merge algorithm is 

important for reduce the drawback i.e. repetitive merge 

and associated disk access for Hadoop. 

 

3. Unable to use RDMA interconnects: 

The existing Hadoop is not taking the advantage 

of high performance RDMA interconnect technology that 

have high performance computing such as 

InfiniBand[5].However the RDMA supports high 

bandwidth and less CPU utilization. To run the Hadoop on 

TCP/IP will not leverage the strength of RDMA. 

 

III. DESIGN OF HADOOP ACCELERATION 

THROUGH NETWORK LEVITATED 

MERGE 

As per the issues discuss in section 2, it’s 

important to overcome it for improve the performance of 

Hadoop. The Hadoop-A(Hadoop Acceleration) is a 

technique which accelerate the Hadoop’s MapReduce 

framework and overcome the limitation of it. An 

acceleration framework take the advantages of RDMA 

interconnect and different merge technique for boost up 

the performance of Hadoop framework. 

 

A. Architecture of Hadoop-A  

In figure1 Hadoop-A design two new user-

configurable plug-ins are added in framework that is a) 

MOFSupplier b) NetMerger. These plug-ins are use the 

RDMA interconnect and different alternative merge 

algorithm. The MOFSupplier and NetMerger both are 

developed in C++ with Object-Oriented principles. The 

Acceleration Framework consists 3 techniques for the 

implementation as follows: 

1. User-Transparent Plug-in: These plug-in are developed 

for user to enable or disable the acceleration for execution 

which is controlled by a parameter in the configuration 

file.  The user-transparent in a two ways (1) No changes 

are introduced in scheduling and monitoring of  

TaskTracker and MapTask  (2) No modification has been 

made into the submission and control interface between 

user program and JobTracker. 

 

 
Fig 1: Hadoop Architecture 

 

2. Multithreaded and Componentized MOFSupplier and 

NetMerger: The MOFSupplier consist RDMA Server 

which handles the fetch request and ReduceTask. It also 

consists the data engine that manages the index and data 

files for the MOFs are generated by local MapTasks. 

 

3. Event-Driven Progress and Coordination: In this 

approach for synchronizing with Java-side components 

provide the event channel between MOFSupplier and 

NetMerger plug-ins and Hadoop framework. This is also 

used to coordinate activities and monitor progress for 

internal components of MOFSupplier and NetMerger. 

 

B. Program Flow 

(1) Fetching Header of Segments (S1, S2...) 

{H1(S1,<key,val>), H2(S2,<key,val>),..}  

(2) Build Priority Queue (PQ) by using Key and 

Value of Segment until all Header arrived. 

(3) Store root record as First Record( RR=H1) 

(4) Fetch and Merge the Record concurrently which 

is not already merged. 

(5) Deliver Merge data to Reduce Task 
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IV. TCP/IP IMPLEMENTATION OF HADOOP 

A 

A TCP/IP Implementation of Hadoop 

Acceleration has two components MOFSupplier (Server) 

and NetMerger (Client). Multithreading technologies are 

used to manage memory pool, send/receive and merge data 

segments. A Map Reduce Framework has two file systems 

Google File System (GFS) [6] and Hadoop Distributed 

File System (HDFS) [4]. On the top of the Hadoop 

program, Apache Hive and pig are two applications for 

dealing with large amount of data in hadoop. 

Figure 2 shows that the relationship between 

these components mentioned as earlier. Apache Pig [7] 

and Hive [8] are deals with the large amount of data. 

Hadoop can support applications running on large 

commodity cluster and Hadoop Distributed file system 

provides data storage mechanism. The TCP/IP 

implementation of Hadoop-A is used to improve the 

performance of Hadoop. It includes two components 

MOFSupplier and NetMerger connected with TCP/IP 

socket protocol via Ethernet. 

 

 
Fig 2 :  Layered Architecture 

 

A. TCP/IP by Hadoop-A Architecture 

1 .Epoll in Linux kernel: 

Epoll is an I/O event notification mechanism used 

in high performance network communication. It is used to 

replace traditional POSIX poll and select system calls. 

Here are some benefits of epoll over old poll/select 

mechanism: (1) the disadvantage of select is that the 

number of opened file descriptors (FD) is limited, which is 

sometimes not enough for the server; epoll does not have 

this limitation, and the largest number of FD can be 

opened, which is more larger than 2048; (2) another 

disadvantage of traditional select is that when you obtain a 

large set of sockets, due to network delay, only some of 

the sockets are active, but select/poll still scans all of the 

socket set linearly, which can lead to efficiency 

proportional penalties. (3) select, poll and epoll, all require 

the Linux kernel  to provide information to the user space; 

as a result, avoiding useless memory copies is very 

important. Epoll solves this problem with the help of map 

via shared memory.  

2. Multithreading: 

As we know, disk I/O is always the bottleneck 

and data movement is expensive and time consuming. 

Consider the case where we only use one thread to read 

data from disk. When we get all the data we need in the 

memory, we send these data to the receiver. After the 

receiver gets this data, it does some calculation and writes 

data back sequence. We can make use of this 

multithreading technology to overlap the execution of this 

process. For instance, we can start a thread to read data 

from the disk, at the same time letting another thread send 

data. In the same way, we can also keep one thread 

receiving data while another thread computing the 

received data. For the purpose of increasing the speed of 

sending or receiving data over Ethernet. 

 

3. Buffer allocation management: 

One of the important resources in computing 

systems is memory. In MOFSuppliers, the program firstly 

allocates many buffers to a Memory Pool, once a Mapper 

write new Map Output data on the disk, when the disk read 

thread will get new empty buffer from memory pool to 

read data from disk. As long as NetMergers receive data, 

the receive thread get an empty buffer from Memory Pool 

and give this buffer with all data to merge thread. 

 

4. Program Flow: 

Figure 3 can give you a view of the flow of the 

program 

(1) When a Reduce Task needs to fetch data from 

MapTask, it will send a fetch request to the NetMerger. 

(2)NetMerger creates a connection with MOFSupplier and 

sends fetches request to MOF- Supplier. 

(3) After receiving the request from NetMerger, 

MOFSupplier adds the request to the request queue, and 

notify DataEngine. Based on the request, DataEngine 

searches its Data Cache which is read from disk by the 

disk read thread. 

 
Fig 3: Program Flow 

(4) If the required data has been found, DataEngine sends 

the data back to MOFServer. 

(5)MOFServer invokes some send threads to send data 

back to the NetMerger. 

(6)NetMerger uses many threads to receive data and gives 

received data to Merge Thread to do computation. As soon 

as computation has been done data will be sent to the 

Reduce Task. 

V. ISHUFFLE 

In the Hadoop, the delay in job completion, the 

coupling of the shuffle phase and reduce tasks which 

leaves potential parallelism between multiple waves of 

map and reduce is unexploited, fails to address data 
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distribution skew among reduce tasks, and makes task 

scheduling inefficient. In this work, we propose to 

decouple shuffle from reduce tasks and convert it into a 

platform service provided by Hadoop. The iShuffle[9], a 

user-transparent shuffle service that pro-actively pushes 

map output data to nodes via a novel shuffle-on write 

operation and flexibly schedules reduce tasks considering 

workload balance. 

 

A. iShuffle Design  

iShuffle, a job-independent shuffle service that 

pushes the map output to its designated reduce node. It 

decouples shuffle and reduce, and allows shuffle to be 

performed independently from reduce. 

 

1. Overview : 

Figure 4shows the architecture of iShuffle. 

iShuffle consists of three components: shuffler, shuffle 

manager, and task scheduler. The shuffler is a background 

thread that collects intermediate data generated by map 

tasks and predicts the size of individual partitions to guide 

the partition placement. The shuffle manager analyses the 

partition sizes reported by all shufflers and decides the 

destination of each partition.  

 

 
 

Fig 4: Architecture of iShuffle 

 

User-Transparent Shuffle Service - We design shufflers 

and the shuffle manager as job-independent components, 

which are responsible for collecting and distributing map 

output data. 

 

Shuffle-on-Write - The shuffler implements a shuffle-on- 

write operation that proactively pushes the map output data 

to different nodes for future reduce tasks. Every time such 

data is written to local disks. The shuffling of all map 

output data can be performed before the execution of 

reduces tasks. 

 

Automated Map Output Placement- The shuffle manager 

maintains a global view of partition sizes across all slave 

nodes. An automated partition placement algorithm is used 

to determine the destination for each map output partition. 

The objective is to balance the global data distribution and 

mitigate the non-uniformity reduce execution time. The 

task scheduler in iShuffle assigns a partition of a reduce 

task only when the task is dispatched to a node with 

available slots. To minimize reduce execution time, 

iShuffle always associates partitions that are already 

resident on the reduce node to the scheduled reduce. 

 

2 .Shuffle-On-Write : 

iShuffle decouples shuffle from a reduce task and 

implements data shuffling as a platform service. This 

allows the shuffle phase to be performed independently 

from map and reduce tasks. The introduction of iShuffle to 

the Hadoop environment presents two challenges: user 

transparency and fault tolerance. Besides user-defined map 

and reduce functions, Hadoop allows customized 

partitioner and combiner. To ensure that iShuffle is user-

transparent and does not require any change to the existing 

MapReduce jobs, we design the Shuffler as an independent 

component in the TaskTracker. It takes input from the 

combiner, the last user-defined component in map tasks, 

performs data shuffling and provides input data for reduce 

tasks. The shuffler performs data shuffling every time the 

output data is written to local disks by map tasks, thus it 

name the operation shuffle-on-write. 

 

 
Fig 5: Workflow of shuffle write 

 

Map output collection - The shuffler contains multiple 

DataSpillHandler, one per map task, to collect map output 

that has been written to local disks. Map tasks write the 

stored partitions to the local file system when a spill of the 

in-memory buffer occurs. It intercepts the writer class 

IFile. Writer in the combiner and add a DataSpillHandler 

class to it. While the default writer writing a spill to local 

disk, the DataSpillHandler copies the spill to a circular 

buffer, DataSpillQueue, from where data is shuffled/ 

dispatched to different nodes in Hadoop. 

 

Data shuffling - The shuffler proactively pushes data 

partitions to nodes where reduce tasks will be launched. 

Specifically, a DataDispatcher reads a partition from the 

DataSpillQueue and queries the shuffle manager for its 

destination. Based on the placement decision, a partition 

could be dispatched to the shuffler on a different node or 

to the local merger in the same shuffler.  

Map output merging - The map output data shuffled at 

different times. It needs to be merged to a single reduce 

input file and sorted by key before a reduce task can use it. 

The local merger receives remotely and locally shuffled 
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data and merges the partitions belonging to the same 

reduce task into one reduce input. To ensure correctness, 

the merger only merges partitions from successfully 

finished map tasks. 

 

VI. HADOOP OFE 

In recent years, data intensive programming using 

hadoop and MapReduce is more increased. Hadoop’s 

implementation of MapReduce in a multi rack cluster is 

dependent on the top of the rack switches and of the 

aggregator switches connecting multiple racks. In Hadoop 

OFE, combine the OpenFlow (OF) enabled switches and a 

modified JobTracker in Hadoop that is OpenFlow. Hadoop 

OFE is used for improving the performance of Hadoop. 

Hadoop-OFE on standard ethernet can provide good 

performance to Hadoop over specialized interconnects. 

 The performance improvements by Hadoop-OFE, 

performing experimental studies using: 1) the MalStone 

Benchmark [10]; and, 2) an open source Hadoop based 

application (Matsu) [11] for processing satellite images to 

detect floods and other phenomena. 

 

A. Hadoop-OFE Design 

Hadoop-based applications are widely available 

in market, the Map and Reduce phases of the computations 

are required different network requirements. Also, many 

Hadoop applications are in iterative manner because of 

that it requires different network requirements for different 

phases of the iteration. In principle, if the network 

topology of the cluster can be required to support these 

requirements, greater efficiency could be achieved when 

processing data with Hadoop. 

 Following figure 6 and figure 7 shows a Hadoop 

cluster with and without OpenFlow networking. To 

explain the benefits of OpenFlow, consider the following 

example. 

 As shown in figure 7, JobTracker is modified to 

get the OpenFlow Controller to change the properties of 

flow paths dynamically, depending upon the execution 

stage of a job. During a Map phase, the flow-path between 

systems A, B and system F (which holds input data) can be 

assign higher priority for passing the data required by job. 

Likewise, during a Reduce phase the flow-path between 

systems A, B and E (which performs Reduce) assigns 

higher priority. 

 
Fig 6 :.Hadoop cluster 

 
Fig 7: Hadoop cluster with OFE interconnectivity 

 

VII. CONCLUSION 

 As per the above points ,the Hadoop-A through 

Network Levitated Merge doubles the data processing 

throughput of hadoop and reduce CPU utilization by more 

than 36%.The iShuffle reduce the Job selection by 30.2% 

than existing Hadoop. Hadoop-A by TCP/IP achieve the 

good scalability and also 26.7% execution time 

outperforms than Hadoop. Hadoop-OFE on standard 

Ethernet can provide good performance to Hadoop over 

specialized interconnects, like InfiniBand. 

 

 ACKNOWLEDGMENTS 

Thanks to our project guide Prof. S. A. Mulay, Head of 

Department Prof. G. V. Garje and all staff members of 

Information Technology department of PVG’s COET, 

Pune. 

 

REFERENCES 
[1]  Apache Hadoop Project. http://hadoop.apache.org/. 

[2]   J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on 
large clusters. Sixth Symp.on Operating System Design and 

Implementation (OSDI), pages 137–150, December 2004. 

[3] Yandong Wang, XinyuQue, Weikuan Yu, Dror Goldenberg, 
DhirajSehgal, LiranLiss. Hadoop Acceleration Through Network 

Levitated Merge, SC11, Seattle, WA. 

[4]  onstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert 
Chansler. The hadoop distributed file system. In Proceedings of the 

2010 IEEE 26th Symposium on Mass Storage Systems and 

Technologies (MSST), pages 1–10. 
[5]   Infiniband Trade Asso. http://www.infinibandta.org. 

[6] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, “The 
Google File System,” pub. 19th ACM Symposium on Operating 

Systems Principles, Lake George, NY, Octo- ber, 2003. 

[7]   hristopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, 
and Andrew Tomkins, “Pig latin: a not-so-foreign language for data 

processing” In SIGMOD08: Proceedings of the 2008 ACM 

SIGMOD international conference on Management of data, pages 
10991110, New York, NY, USA, 2008. ACM. 

[8]   Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad 

Chakka, Ning Zhang 0002, Suresh Anthony, Hao Liu, and 

Raghotham Murthy, “Hive - a petabyte scale data warehouse using 

hadoop,” In ICDE, pages 9961005, 2010. 
[9]   YanfeiGuo, JiaRao, and Xiaobo Zhou “iShuffle: Improving Hadoop 

Performance with Shuffle-on-Write” in 10th International 

Conference on Autonomic Computing (ICAC ’13) 
[10] Collin Bennett, Robert L. Grossman, David Locke, Jonathan 

Seidman and Steve Vejcik, MalStone: Towards a Benchmark for 

Analytics on Large Data Clouds, The 16th ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining 

(KDD 2010), ACM, 2010. 

 [11] Daniel Mandl, Stuart Frye, Pat Cappelaere, Robert Sohlberg, 
Matthew Handy, and Robert Grossman, The Namibia Early Flood 

Warning System, A CEOS Pilot Project, IGARSS 2012. 


